
1.  Introduction
Soil moisture plays an important role in the earth system through the coupled water and energy balances 
(Seneviratne et al., 2010). It is a source of water for the atmosphere through evapotranspiration (ET) from land, 
which includes plant transpiration and soil evaporation. In wet and dry climate regimes, atmospheric conditions 
show less dependence on soil moisture, but in a transitional climate regime, soil moisture provides a first-order 
constraint on ET variability (Koster et al., 2004; Seneviratne et al., 2006). On the other hand, groundwater avail-
ability imposes crucial effects on the soil moisture by water exchange between the aquifer and unsaturated zone. 
Shallow groundwater enhances root zone soil moisture content and therefore also ET (X. Chen & Hu, 2004), and 
the surface energy budget can be very sensitive to the groundwater level (GWL) (Kollet & Maxwell, 2008). Soil 
moisture and GWL characterization are therefore important for a better estimate of the water and energy fluxes 
from the land to the atmosphere.

Various terrestrial system models are developed to simulate water and energy cycles, hydrological processes 
and characterize soil moisture and GWL. Land surface models were first used in the late 1960s (Manabe, 1969) 
and then developed into multi-layered descriptions of vegetation and root zone biogeophysical processes (E. 
Dickinson et al., 1993; R. E. Dickinson, 1986; Sellers et al., 1986). Later also 3D-integrated hydrological models 
capturing horizontal water redistribution with lateral groundwater flow and surface runoff were developed (Kollet 
& Maxwell, 2006, 2008; Morita & Yen, 2002; Panday & Huyakorn, 2004; Qu & Duffy, 2007; VanderKwaak & 
Loague, 2001). Afterward, land surface and integrated hydrological models were combined in integrated land 
surface-hydrological models, driven by atmospheric forcing data. To further understand the feedbacks between 
the land and the atmosphere, simulation platforms have been developed (Anyah et al., 2008; Jiang et al., 2009; 
Mölders & Rühaak, 2002; Seuffert et al., 2002; VanderKwaak & Loague, 2001; York et al., 2002) which led to 
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fully coupled physically-based models of the terrestrial system from the subsurface across the land surface into the 
atmosphere (Larsen et al., 2014; Maxwell et al., 2007, 2011; Shrestha et al., 2014). Examples of these modeling 
platforms include Parflow-WRF (Maxwell et al., 2011), AquiferFlow-SiB2 (Tian et al., 2012), HIRHAM-MIKE-
SHE (Butts et  al.,  2014), WRF-Hydro (McCreight et  al.,  2021) and Terrestrial Systems Modeling Platform 
(TSMP) (Shrestha et al., 2014). Terrestrial system modeling with a coupled atmosphere-land surface-subsurface 
model is now used for a better description and explanation of (bio)physical terrestrial system processes (Gerten 
et al., 2004), including the exchange of water, energy, carbon and nitrogen between the land and the atmosphere. 
However, such coupled models with high complexity involve different uncertain parameters, forcing terms as 
well as boundary conditions which are difficult to estimate. The resulting simulations are therefore associated 
with high uncertainties. To reduce the uncertainties of the estimated model states and parameters, data assim-
ilation (DA) can be helpful. DA allows correcting the model simulations with help of measurements, by opti-
mally combining model predictions and measurements in a formal modern statistical framework (Moradkhani 
et al., 2019).

The Ensemble Kalman filter (EnKF) is one of the most common DA algorithms. It belongs to the class of 
sequential DA techniques, which involve (a) a model propagation step for an ensemble of model simulations to 
compute changes in state estimates between measurement times, and (b) an update step which modifies state 
and parameters estimates to account for information contained in new measurements (McLaughlin, 2002). It is 
based on the classical Kalman filter and was found to be suitable for nonlinear systems and high-dimensional 
problems (Burgers et  al.,  1998; Evensen,  1992). Moreover, localized variants of Ensemble Kalman filters 
have been proposed (Houtekamer & Mitchell, 2001; Hunt et al., 2007; Nerger & Gregg, 2007). Localization is 
considered as it suppresses spurious long-range correlations between states produced by a limited ensemble size 
(Anderson, 2001; Hamill et al., 2001; Houtekamer & Mitchell, 2001) and increases the computational efficiency. 
A local analysis involves much less data than a global analysis, and the local analyzes can be computed inde-
pendently in parallel (Harlim & Hunt, 2007).

Most of the DA studies are for a single compartment, like for the land surface only or groundwater only, and 
often for simplified, artificial domains. For example, in Y. Chen and Zhang (2006) and Hendricks-Franssen and 
Kinzelbach (2008) hydraulic head data are assimilated into a groundwater flow model, to estimate hydraulic head 
and hydraulic conductivity. Data assimilation studies which comprised multiple compartments of the terrestrial 
system include for example, Shi et al. (2014), who presented a synthetic multivariate DA study, with assimilation 
of GWL, soil moisture, discharge, land surface temperature and ET data in the physically based land surface 
hydrological model Flux-PIHM. They found that model parameters can be strongly constrained, especially by 
soil moisture, land surface temperature and discharge measurements, and confirmed those findings in a real world 
case study for the Shale Hills watershed (0.08 km 2) (Shi et al., 2015). D. Zhang et al. (2016) jointly assimilated soil 
moisture and GWL data in the integrated hydrological model MIKE-SHE, in which they found that localization 
is important. In their study, assimilation of these data improved the simulation of ET and discharge. Rasmussen 
et al. (2015); Rasmussen et al. (2016) assimilated with MIKE-SHE GWL and discharge data and analyzed factors 
which influenced the quality of DA. They found that when few GWL observations (0–35 observations from 
Karup catchment in Denmark were tested) are assimilated or when the parameters are estimated, more ensemble 
members are needed, and the ensemble size can be reduced when adaptive localization is used. They were also 
able to account for the observation bias by using bias-aware Kalman filters in assimilation of GWL data. Hydrau-
lic head assimilation with the integrated model MIKE-SHE was also described in Ridler et al. (2017) and D. 
Zhang et al. (2015), and the same model was also applied to assimilate surface water and groundwater data (He 
et al., 2019). It should be noticed that in Shi et al. (2014) and Rasmussen et al. (2015); Rasmussen et al. (2016) 
uniform hydraulic parameter fields were adopted in the subsurface models. Also, in Botto et al. (2018) soil mois-
ture and pressure head were assimilated, and they showed that EnKF can correct states and parameters in a real 
application with strong nonlinearities, but multi-source DA degraded model predictions in some cases. Gebler 
et al.  (2019) assimilated soil moisture data in a high resolution CLM-Parflow land surface-subsurface model 
for a small subcatchment (1.28 × 1.12 km 2). They concluded that joint updating of soil moisture and hydraulic 
conductivity with EnKF gives significantly better results than soil moisture updating alone, and also the estima-
tion of discharge could be improved. However, they found a much better performance for synthetic simulation 
scenarios that mimicked the real-world case, than for the real-world case simulations. It could only be understood 
partly why this was the case. Furthermore, H. Zhang et al.  (2018) studied different assimilation strategies of 
groundwater levels with CLM-Parflow, over a small artificial domain (4 soil columns). They concluded that 
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jointly assimilating and updating soil moisture and groundwater data can give the best results in characterizing 
root zone area soil moisture.

Most of the mentioned established work on soil moisture and GWL DA focused on small domains (∼1–∼100 km 2), 
or simplified and artificial domains (e.g., hillslope in Botto et al. (2018), 4 soil columns in (H. Zhang et al., 2018)), 
and also assumed homogeneity in soil parameters (e.g., Shi et al. (2014); Shi et al. (2015), in H. Zhang et al. (2018) 
hydraulic conductivity only varies in depth). In this work, the domain of simulation is 57,850 km 2 in southwest-
ern Germany, covering a variety of landscapes and land uses. The land surface and subsurface variables in the 
reference (integrated) models and the DA ensemble simulation exhibit complex 3-dimensional heterogeneous 
patterns based on high resolution land use, soil and geological information, which are assumed to be much closer 
to reality than most used in DA studies. As a result, the more realistic and subtle settings of this work allow us 
to investigate soil moisture and pressure head DA in integrated land surface-subsurface models. In addition, this 
is the first time GWL assimilation in a coupled land surface-subsurface model is evaluated for a fully heteroge-
neous 3D subsurface. This is an important step towards the assimilation of groundwater levels in integrated land 
surface-subsurface models for large scale real-world cases. The DA experiments in this work are carried out with 
TSMP-PDAF, which includes a coupled land surface-subsurface model and a DA framework (Kurtz et al., 2016; 
Nerger & Hiller, 2013; Shrestha et al., 2014). Measurements are extracted from a virtual reality (VR) simula-
tion (hereafter we name it as VR) which mimics southwestern Germany, including the Neckar River catchment 
(Schalge et al., 2021). The simulation with the coupled model is based on realistic atmospheric forcings, land 
use including leaf area indices, soil maps and geological maps from this region in southwestern Germany. Given 
these inputs, for a long time period simulations with the coupled model are made, and the outcome of these simu-
lations is the VR. Virtual observations which are used in DA experiments are extracted from this VR, by sampling 
soil moisture and GWL values at randomly selected locations, and adding noise corresponding to a measurement 
error. The VR approach is used as subsurface measurements are scarce, while such a VR reference model allows 
the extraction of many data. Also, with the VR approach DA can be assessed based on variables not assimilated. 
This is useful to verify the robustness of the DA method.

The ensemble size has important affects on the accuracy of DA. Related studies were conducted for example, by 
Y. Chen and Zhang (2006), who performed DA experiments with 2D and 3D transient groundwater flow models 
and EnKF and found that 200 ensemble members are needed for adequate estimation of states and parameters, 
and larger ensemble sizes are needed for realistic estimation of the uncertainties of the ensemble means. Keller 
et al. (2018) found from various experiments with a 2D groundwater flow-tracer transport model and a 2D ground-
water flow model that the characterization of unknown hydraulic conductivity fields improved for increasing 
ensemble sizes, especially until an ensemble size of 250 is reached. Hendricks-Franssen and Kinzelbach (2008) 
reported an ensemble size of 200–500 is needed for state and parameter estimation with EnKF in a groundwater 
hydrological model to avoid filter inbreeding. In this work, we will investigate the ensemble spread and examine 
for the presence of underdispersion and filter inbreeding for the ensemble size we use.

We present our work as follows. In Section 2 we describe the methodology of our work, including the terrestrial 
system model used (Section  2.1), DA algorithm and framework (Section  2.2) and the VR used as reference 
(Section 2.3). Then we describe the setup for numerical experiments in Section 3, and the results are presented in 
Section 4, followed by discussion in Section 5. We conclude in Section 6.

2.  Methodology
2.1.  The Terrestrial System Modeling Platform (TSMP)

TSMP (Shrestha et al., 2014) is a modular scale-consistent terrestrial systems model consisting of well-established 
models for the atmosphere, land surface and subsurface. These models are two-way coupled with a coupler, 
which is included in the framework for communication of variables like exchange of fluxes at the shared bounda-
ries of the different component models. In this work, only the land surface and subsurface components of TSMP 
were used.

The land surface model used in TSMP is the Community Land Model, version 3.5 (CLM3.5), developed by the 
National Center for Atmospheric Research (Oleson et al., 2004, 2008). The model simulates the radiative fluxes 
and transfer through the canopy, water and energy exchange between the land and the atmosphere, snow accu-
mulation and melt, water and energy transport in the soil, further hydrological processes like surface runoff and 
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interception, photosynthesis and vegetation growth. (The hydrological processes will be handled by the subsur-
face model Parflow in our simulation with the CLM-Parflow coupled model.) CLM has 10 soil layers extending 
3 m below the surface. Water and energy transport in CLM are in the vertical direction only. CLM has up to 16 
plant functional types (PFTs) which can grow on soil columns, and has PFT-specific vegetation parameters.

For subsurface modeling, the finite-difference subsurface hydrological model Parflow (version 3.4.0) is used 
(Ashby & Falgout, 1996; Jones & Woodward, 2001; Kollet & Maxwell, 2006, 2013). It solves the 3D Rich-
ards equation for flow in the unsaturated and saturated zone and the kinematic wave equation for overland 
flow. A central finite difference discretization scheme is used, with Eulerian scheme in space and time, and 
the linear system of equations is solved by a Newton-Krylov nonlinear solver (Jones & Woodward, 2001). A 
terrain-following grid transformation is used so that the number of vertical layers is independent of the maxi-
mum  topographic height of the simulation domain (Maxwell,  2013). This reduces the computation time and 
allows a finer resolution near the surface of order 10 −2 m. Parflow can simulate lateral transport of water and 
replaces the hydrology simulation in CLM.

The coupler OASIS-MCT (version 3) (Ocean-Atmosphere-Sea-Ice-Soil coupler - Model Coupling Toolkit) (Craig 
et al., 2017; Gasper et al., 2014; Valcke, 2013) controls the exchange of the fluxes and state variables between 
CLM and Parflow. The variables communicate during the runtime by calling OASIS-MCT routines at explicitly 
defined time intervals. The implementation of the coupler in the parallel computing architecture of the TSMP 
framework and the variables exchanged between the model components are described in Kurtz et al. (2016).

2.2.  Data Assimilation

2.2.1.  Ensemble Kalman Filter With Localization (LEnKF)

In this work, we apply the localized ensemble Kalman filter (LEnKF) for DA. LEnKF is a variant of the sequential 
DA algorithm EnKF. Starting from some specified initial conditions, the model solution is sequentially updated 
at every time step where measurements are available. It propagates the previous information which has been 
assimilated forward in time to increase the knowledge of the system (Evensen, 1994). For LEnKF, updates from 
the filter are limited to the vicinity of the observation locations. Here we give a brief description of the EnKF 
algorithm and then the localization procedure imposed.

We start with some physical states describing a system, and a dynamical model 𝐴𝐴  simulating the evolution 
of these states. The states and the model parameters to be updated by DA are collected in the state vector 

𝐴𝐴 𝐱𝐱 = (𝑥𝑥1, 𝑥𝑥2,… , 𝑥𝑥𝑛𝑛)
𝑇𝑇 with size n (superscript T denotes the transpose as x is a column vector), and P is the corre-

sponding covariance matrix. We also define the observation vector y and observation operator 𝐴𝐴  which relates 
the observations and state vector by

𝐲𝐲 = (𝐱𝐱).� (1)

For the ensemble Kalman filter (EnKF) (Evensen, 1994), the model is described statistically with an ensemble of 
states so that the uncertainty is given by the ensemble spread and the covariance matrix can be approximated by 
the covariance of the ensemble of the state vectors. We denote the ensemble as xk, 1 ≤ k ≤ p, and p is the ensem-
ble size. Moreover, the observable is treated as random variables with and ensemble (of size p) of observation 
vectors. This is done by adding a random error ϵ to y, where the variance of ϵ is equal to the error variance of the 
observations, that is, for each ensemble member k,

𝐲𝐲
′

𝑘𝑘
= 𝐲𝐲 + 𝜖𝜖𝑘𝑘,� (2)

where 𝐴𝐴 𝐲𝐲
′

𝑘𝑘
 is a vector containing the perturbed observations. For each ensemble member, the forecast is (for clarity 

we omit the subscript k):

𝐱𝐱
𝑓𝑓 =  (𝐱𝐱𝑎𝑎) ,� (3)

𝐏𝐏
𝑓𝑓
≈

⟨

(

𝐱𝐱
𝑓𝑓
− < 𝐱𝐱

𝑓𝑓
>
) (

𝐱𝐱
𝑓𝑓
− < 𝐱𝐱

𝑓𝑓
>
)𝑇𝑇
⟩

,� (4)
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where the superscripts a and f denote analysis and forecast respectively. And the analysis is given by:

𝐱𝐱
𝑎𝑎
= 𝐱𝐱

𝑓𝑓
+𝐊𝐊

[

𝐲𝐲
′
−

(

𝐱𝐱
𝑓𝑓
)]

,� (5)

𝐏𝐏
𝑎𝑎
≈

⟨

(𝐱𝐱
𝑎𝑎
− < 𝐱𝐱

𝑎𝑎
>) (𝐱𝐱

𝑎𝑎
− < 𝐱𝐱

𝑎𝑎
>)

𝑇𝑇
⟩

,� (6)

where the angle brackets denote averaging over the ensemble members (Burgers et al., 1998). The covariance 
matrices are approximated with covariance matrices of the ensemble instead of propagating with the model, 
which is the key to reduce computational cost and improve robustness under non-linear model dynamics. The 
Kalman gain (at step i + 1) is given by

𝐊𝐊 = 𝐏𝐏
𝑓𝑓
𝐇𝐇

𝑇𝑇
(

𝐇𝐇𝐇𝐇
𝑓𝑓
𝐇𝐇

𝑇𝑇
+ 𝐑𝐑

)−1

.� (7)

here H is the tangent linear form of 𝐴𝐴  and R is the covariance matrix of the observation errors. If model param-
eters are included in the state vector, the model 𝐴𝐴  in Equation 3 will not modify the parameters; the parameters 
are only modified in the analysis step.

In some simulation scenarios a damping factor (α) was used. Dampening can reduce filter inbreeding, which 
happens when the covariance matrix is estimated based on a too small ensemble size. The damping factor 
reduces the modification of the forecast with the Kalman gain and limits the intensity of the perturbation of the 
log-hydraulic conductivity field (Gebler et al., 2019; Hendricks-Franssen & Kinzelbach, 2008). To achieve this, 
the analysis of the state vector in Equation 5 is modified as:

𝐱𝐱
𝑎𝑎
= 𝐱𝐱

𝑓𝑓
+ 𝜶𝜶𝐊𝐊

[

𝐲𝐲
′
−

(

𝐱𝐱
𝑓𝑓
)]

,� (8)

where α is a diagonal matrix with values between 0 and 1 for the diagonal entries.

The formulation of localization follows the approach described in Houtekamer and Mitchell (2001), where the 
covariance matrix P is modified with a correlation matrix A. In the evaluation of the Kalman gain in Equation 7, 
P f is replaced by

𝐏𝐏
′𝑓𝑓
= 𝜌𝜌𝐀𝐀◦𝐏𝐏

𝑓𝑓� (9)

where the operation ρA◦P denotes the Schur product between A and the covariance matrix P, defined by 
𝐴𝐴 𝐴𝐴

′𝑓𝑓

𝑖𝑖𝑖𝑖
= 𝐴𝐴𝑖𝑖𝑖𝑖𝑃𝑃

𝑓𝑓

𝑖𝑖𝑖𝑖
 . Therefore, it requires the dimensions of A and P to be the same. The localization effect is imposed 

on the covariance matrix by specifying a spatial correlation through A, which results in:

𝐊𝐊 = 𝜌𝜌𝐀𝐀1
◦

(

𝐏𝐏
𝑓𝑓
𝐇𝐇

𝑇𝑇
) [

𝜌𝜌𝐀𝐀2
◦

(

𝐇𝐇𝐇𝐇
𝑓𝑓
𝐇𝐇

𝑇𝑇
)

+ 𝐑𝐑

]−1

.� (10)

here 𝐴𝐴 𝐀𝐀1 ∈ 𝑀𝑀𝑛𝑛×𝑚𝑚(ℝ) and 𝐴𝐴 𝐀𝐀2 ∈ 𝑀𝑀𝑚𝑚×𝑚𝑚(ℝ) , and n, m are the sizes of the state and observation vector respectively. 
For both A1 and A2 we use the correlation matrix Ai,j = f(rij), where f(rij) is a function with local support, and rij 
is the physical distance between the locations ri and rj, corresponding to row i and column j of P fH T (or HP fH T) 
respectively. Therefore, in Equation 10, in the first Schur product rij is the distance between the locations corre-
sponding to xi and yj, while for the second Schur product it is the distance between the locations corresponding to 
yi and yj. The Schur product (Equation 9) between the covariance matrix of the background error and a correlation 
function f(rij) can filter the small and noisy background-error covariances associated with remote observations 
(Houtekamer & Mitchell, 2001). Figure 1 shows schematically the update of the ensemble of state vectors and the 
covariance matrix in an iteration of the DA cycle using Equations 3–10.

In our work, an exponential function is adopted with cut-off distance for f, that is, f(rij) = exp(−rij/rs) for rij ≤ rc 
and zero otherwise, where rs is a length scale where spatial correlation of soil moisture is significant, which 
determines the extent of localization, rc is a cut-off radius, and rc = 3rs in our experiments. Furthermore, only 

localization in the horizontal plane is considered, that is, 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 =

√

(𝑟𝑟𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑗𝑗𝑗𝑗𝑗)
2
+ (𝑟𝑟𝑖𝑖𝑖𝑖𝑖 − 𝑟𝑟𝑗𝑗𝑗𝑗𝑗)

2 , where ri,x(rj,x) and 
ri,y(rj,y) are the physical coordinates on the horizontal plane.
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2.2.2.  Defining State Vector, Observation Vector and Observation Operator for the Data Assimilation 
Experiments

In the following experiments, the model 𝐴𝐴  is the land surface-subsurface model CLM-Parflow, the state and 
observation vectors are as follows:

1.	 �If soil moisture data are assimilated and only soil moisture states are updated, the state vector contains all soil 
moisture values for the subsurface, that is, 𝐴𝐴 𝐱𝐱 = (𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝑇𝑇  , 1 ≤ i ≤ nx, 1 ≤ j ≤ ny and 1 ≤ k ≤ nz, where θ is soil 
moisture, and nx, ny and nz are the number of grid cells in the x, y and z directions, respectively, the size of the 
state vector x is n = nxnynz. If in addition hydraulic conductivity Ks is also updated, also hydraulic conductivity 
values for those grid cells are included in the state vector, that is, 𝐴𝐴 𝐱𝐱 = (𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, log𝐾𝐾𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑇𝑇  , n = 2nxnynz. The 
observation vector contains soil moisture values at the selected measurement locations.

2.	 �If GWL data are assimilated in a weakly coupled DA approach, only saturated subsurface states are updated. 
In this case, the state vector contains the pressure values for the saturated grid cells. Therefore, 𝐴𝐴 𝐱𝐱 = (𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

𝑇𝑇 
for all (i, j, k) such that water saturation Sw = 1 at (i, j, k), and ψ is the pressure head. H. Zhang et al. (2018) 
showed, for a small artificial domain, that this can give more stable results. The saturated grid cells are selected 
based on the model forecast. If in addition hydraulic conductivity is also updated, also hydraulic conductivity 
values for those grid cells are included in the state vector. The observation vector contains the pressure head 
data not only at the GWL, but also below the GWL assuming hydrostatic conditions. The domain is of finite 
depth of 100 m, and only groundwater from the upper unconfined aquifer is considered so the assumption 
is reasonable. This condition is imposed to enhance the stability of the DA updates (H. Zhang et al., 2018).

3.	 �If GWL data are assimilated in a fully coupled DA approach, all subsurface states are updated. The state vector 
contains now pressure values for the saturated grid cells and soil moisture values for the unsaturated grid cells. 
that is, 𝐴𝐴 𝐱𝐱 =

(

𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝜃𝜃𝑖𝑖′ ,𝑗𝑗′ ,𝑘𝑘′
)𝑇𝑇  , for all (i, j, k) such that Sw = 1 at (i, j, k), and (i′, j′, k′) are the coordinates of the 

remaining grid cells, that is, unsaturated ones. H. Zhang et al. (2018) showed that this approach is more stable 
than updating pressure values in the unsaturated zone, given strongly non-Gausssian distributions of pressure 
under dry conditions. Saturated grid cells are selected in the same way as for the weakly coupled approach and 
hydraulic conductivity can also be updated and included in the state vector. The observation vector contains 
again the pressure head data and possibly also soil moisture data.

The observation operator is linear and extracts the values of soil moisture θ (and/or pressure head ψ) at the 
selected grid cells. In matrix representation, 𝐴𝐴 [𝐇𝐇]𝑛𝑛×𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

,𝐻𝐻𝑖𝑖𝑖𝑖 = 1 when the physical coordinates for state vector 
component xi are the same as the coordinates of the j-th measurement, and Hij = 0 otherwise. The operator will 
simply truncate components for the model parameter if the latter is included in the state vector.

The Kalman gain matrix K is evaluated for the whole domain with localization (Equation  10) and operated 
on 𝐴𝐴 𝐲𝐲

′
−

(

𝐱𝐱
𝑓𝑓
)

 (which is a column vector with the entries representing each measurement location) to update 
the estimate of the states or both states and parameters at every grid cell and for all soil layers. In updating the 
soil moisture by Equation 5 we included further constraints to avoid non-physical solutions. If the analyzed θ 
is close to the residual soil moisture content, the pressure head evaluated by the van Genuchten model (van 
Genuchten, 1980) might be extremely negative and the DA updates might become numerically unstable. We 
imposed a lower bound to the water saturation of the soil to be 0.3 vol. % above the residual value Sw0, that is, 
Sw ≥ Sw0 + 0.003. The lower bound of soil moisture θi,j,k at any position is:

𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ (𝑆𝑆𝑤𝑤0|𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 0.003)𝜙𝜙𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,� (11)

Figure 1.  Schematic view of a cycle of soil moisture data assimilation (DA). In the diagram, x b is the initial estimate of the 
state vector, which is also the analysis at the end of the previous DA cycle.
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Any value of soil moisture below the lower bound after evaluation will be 
truncated to this lower bound according Equation 11.

2.2.3.  Data Assimilation Framework

The DA framework consists of the coupling of TSMP and the parallel data 
assimilation framework (PDAF), under TSMP-PDAF. PDAF is a library 
providing modules of various sequential DA filters with parallel algorithms, 
and is applicable to any geoscientific model (Nerger & Hiller, 2013). The 
library also includes the EnKF and the corresponding localized version which 
are coded as described in Section 2.2.1. The coupling between the model and 
PDAF is in the so-called online mode so that the data exchange between the 
model and PDAF is stored in the main memory, contrary to the offline mode 
which writes the input and output files on disk space which is less efficient. 
The interface for online coupling between the PDAF library and TSMP was 
implemented and documented by Kurtz et al. (2016). This involves defining 
the state vector x describing the model as the input for PDAF, and the obser-
vation operator 𝐴𝐴 𝐲𝐲 = 𝐇𝐇 (𝐱𝐱) relating the observations y with the model states.

For the structure of the TSMP-PDAF framework, the land surface and subsur-
face models (with coupler OASIS-MCT) are treated as libraries, wrapped in 
the TSMP framework. On the other hand, the PDAF library is connected with 
a user defined interface. Both the TSMP framework and the PDAF interface 
are called in the main program (Kurtz et al., 2016).

2.3.  The Virtual Reality

2.3.1.  The Neckar River Catchment

The whole rectangular computational domain is 57,850 km 2 and covers southwestern Germany and adjacent 
areas in France and Switzerland. The Neckar catchment is covered by the domain and has a size of 13,928 km 2, 
and simulations are conducted for the year 2015. The topography of the simulation domain is shown in Figure 2. 
The horizontal spatial resolution is 800 m for both of the land surface (CLM) and subsurface (Parflow). For 
the vertical profile, there are 10 soil layers for CLM up to a depth of 3 m, and 50 for Parflow up to a depth of 
100 m, while the upper 10 layers coincide with the 10 CLM soil layers. The Neckar catchment possesses various 
features of typical central European catchments so that it is of interest to construct a VR model based on this river 
catchment.

The catchment is located at the east of the Black Forest and north of the Swabian Jura, and the VR also includes 
surrounding regions like the upper Rhine valley and the foothills of the Alps. The catchment features distinct 
variability in terms of hydrology, climate, soil properties and land uses including grassland, cropland, broad leaf 
forest and needle leaf forest. Mountainous regions like the Black Forest and the Swabian Jura are mostly forested, 
while grasslands are rare and the majority of the land is used for agriculture. In most regions the groundwater 
table is only at a depth of a few meters or less except in the mountains, and therefore coupling between the ET 
and groundwater table can be expected. Annual rainfall is 1,000 mm on average with minimum values of 600 mm 
in the Rhine valley and peaks of up to 2,000 mm in the Black Forest. The annual temperature in the center of the 
domain in Stuttgart is 8.6°C and monthly average temperatures vary between −0.4°C in January and 17.7°C in 
July. Further information on the Neckar catchment can be found in Schalge et al. (2021).

2.3.2.  The VR as a Reference Model

The reference model is a VR produced by a simulation with the CLM-Parflow components of TSMP, driven by 
atmospheric forcing data, which are obtained from another fully coupled model including also an atmospheric 
component. Spin-up simulations with the land surface-subsurface model are conducted in order to obtain equili-
brated initial conditions. This is done by recycling the atmospheric forcings for the year 2015 for 10 consecutive 
years. The end of the spin-up is used as initial condition for the VR simulation. Soil moisture and GWL measure-
ments are taken from this VR and used in the DA experiments.

Figure 2.  Soil moisture and groundwater level observation locations (100 in 
total) used in the data assimilation experiments, indicated by black crosses. 
The river discharge at 3 locations will be evaluated in the experiments, 
indicated by the blue dots, namely (from north to south), Rockenau, Lauffen, 
Plochingen. The topography of the simulation domain is shown in the 
background.
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The atmospheric forcing data, used to drive the VR and also the model ensemble, are obtained from an ensem-
ble simulation with the fully coupled model with the atmospheric model compartment. The atmospheric model 
used is Consortium for Small-scale Modeling (COSMO), and a brief description of the model and equations of 
COSMO are given by Shrestha et al. (2014). The fully coupled model COSMO-CLM-Parflow is at a resolution 
of 2.8 km for the atmosphere and 800 m for the land and subsurface. The ensemble consists of only 16 members, 
there are 4 members with lateral forcing originating from different global atmospheric circulation models (Inte-
grated Forecasting System, (Gregory et al., 2000), Global Forecast System (White et al., 2018), Global Spectral 
Model (Mizuta et al., 2006) and Globales Modell (GME Majewski et al. (2002))) while 4 additional members use 
the same lateral forcing (GME) but have different parametrizations of shallow convection, cloud microphysics, 
turbulence and boundary layer processes. The remaining 8 members use the atmospheric setup of one of the first 
8 but are combined with additional perturbations of the Leaf Area Index (LAI) and soil texture and associated 
soil hydraulic parameters. The time step is 15 min for the land surface and subsurface components, and only 5 s 
for the atmosphere. The coupling frequency of atmosphere-land surface and land surface-subsurface is 15 min. 
The operational COSMO setup of the German national weather service (Deutscher Wetterdienst, DWD) is used. 
Lateral boundary forcing and constant fields include topology and landmask, and the lateral relaxation zone is 
12 km.

Land use in land surface modeling was taken from the 2,006 Corine Land Cover Data Set of EEA (European 
Environment Agency). The LAI was computed from MODIS (Myneni et al., 2002) as monthly average, with four 
land uses: broad leaf forest, needle leaf forest, cropland and grassland.

The 1:1,000,000 soil map (BUEK1000) from the Federal Institute for Geosciences and Natural Resources (BGR) 
was used. The saturated hydraulic conductivity, Mualem-van Genuchten parameters, porosity and residual water 
content, were estimated with pedotransfer functions based on soil texture data derived from the soil map (Cosby 
et al., 1984; Tóth et al., 2015) down to 3 m depth. For grid cells at or next to river cells gravel layers were intro-
duced with high hydraulic conductivity of 2.78 × 10 −4 m s −1, down to 8 m depth, and van-Genuchten parame-
ters n = 2 and α = 4 m −1. The porosity and residual saturation were respectively 0.6 and 0.06. The Manning's 
coefficient was 1.99 s/m 1/3 and the specific storage was 10 −3 m −1. This chosen Manning's coefficient gives a 
realistic base flow for the local rivers and accounts for scale mismatches between model and reality. Moreover, 
a layer of weathered bedrock starts below the soil, defined by a higher porosity (0.4) and hydraulic conductivity 
(2.78 × 10 −5 m s −1). The layer increased subsurface flow and countered the too shallow simulated groundwater 
levels. Furthermore, a 3D geologic model of the geological survey of Baden-Württemberg defined by 11 rock 
types was used, which should provide a realistic representation of the deeper subsurface of the domain. Using 
this setting, Schalge et al. (2021) demonstrated that the simulated GWL and river discharge were in good corre-
spondence with the observed values.

3.  Experimental Setup
3.1.  Ensemble Simulations

The localized EnKF is used in the DA experiments with a total of 64 ensemble members. For each member 
random perturbations are introduced for (a) atmospheric forcing terms, (b) LAI and (c) soil properties. Correla-
tions among these parameters and forcing terms are prescribed when imposing these perturbations:

1.	 �Atmospheric forcings: In order to impose meaningful correlations we analyzed the 16 model runs with the fully 
coupled atmosphere-land surface-subsurface model (see Section 2.3.2). We evaluated the auto-variograms and 
cross-variograms, in space and time of air temperature, incoming shortwave radiation, incoming longwave 
radiation and precipitation with the library Gslib (Deutsch & Journel, 1992). The fitted semivariograms and 
cross-variograms are detailed in Appendix A. In total 64 spatially distributed fields of the four atmospheric 
variables were generated with help of these semivariograms and cross-variograms, using the GCOSIM3D code 
for sequential Gaussian co-simulation (Gómez-Hernández & Journel, 1993). Each variogram is composed of 
two spherical models having different ranges (see Isaaks and Srivastava (1994) for technical details). Let fi be 
unperturbed forcing, and 𝐴𝐴 𝐴𝐴

′

𝑖𝑖
 be an ensemble of perturbed forcings, i ∈ {1, 2, 3, 4} represents one of the four 

atmospheric variables. The ensemble averages for the different atmospheric forcings 𝐴𝐴 𝐴 𝐴𝐴
′

𝑖𝑖
> are consistent 

with those of the 16 fully coupled model runs. The standard deviations of the perturbations are also rescaled 
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to those of the 16 fully coupled model runs. We perturb the forcing either additively or multiplicatively. Let ϵi 
be the perturbation field. An ensemble member is additively perturbed according:

𝑓𝑓
′

𝑖𝑖
= 𝑓𝑓𝑖𝑖 + 𝜖𝜖𝑖𝑖,� (12)

�where ϵi is a normal distribution with < ϵi > = 0 and the same standard deviation σ(ϵi) as for the specific vari-
able over the 16 model runs. An ensemble member is multiplicatively perturbed according:

𝑓𝑓
′

𝑖𝑖
= 𝑓𝑓𝑖𝑖𝜖𝜖𝑖𝑖,� (13)

�where ϵi is a log-normal distribution with < ϵi > = 1 and the same standard deviation as for the specific vari-
able over 16 model runs. The precipitation and shortwave radiation are perturbed multiplicatively, while the 
longwave radiation and temperature are perturbed additively (Reichle et al., 2007).

2.	 �LAI: The LAI in the domain is computed from MODIS for the four vegetated land use classes. The MODIS 
LAI values are perturbed to generate 64 different monthly spatial LAI distributions. The perturbations for 
the four different land use classes are perfectly correlated with r = 1.0. The LAI peak and the length of the 
growing season are perturbed and the perturbations are assumed to be directly proportional to each other so 
that a long growing season is associated with a high LAI peak. The standard deviations for the LAI peak are 
1 for broad leaf forest, and 0.75 for the other PFT's. The standard deviations for the start and the end of the 
growing season are 0.5 months. The LAI ensemble average and standard deviation for the four PFTs are given 
in Figure 3.

3.	 �Soil properties: The soil properties are based on the soil map also used for the VR simulation (Section 2.3). 
The ensemble of soil properties is generated according to the methodology described in Baroni et al. (2017). 
In summary, the map is sampled approximately at 1 point per 50 km 2 based on a stratified approach, and the 
soil properties, including sand and clay content, organic carbon content, and dry soil bulk density for each 
point are extracted. The variograms and covariograms of these soil properties are calculated and fitted with 
exponential models. These models are used for kriging the depth and carbon content of each soil layer, while 
geostatistical co-simulation is used to generate an ensemble of spatial fields for the other soil properties. The 
soil parameters such as saturated hydraulic conductivity, Mualem-van Genuchten parameters and porosity are 
estimated by applying pedotransfer functions on the generated spatial distributions of soil texture. Eventually, 
we have generated 64 ensemble members of spatially distributed soil properties and parameters. The ensemble 
average and standard deviation for four soil parameters at 10 cm depth are given in Figure 4, and the spatially 
averaged ensemble mean and standard deviation of the subsurface hydraulic parameters at different depths 
are shown in Figure 5.

With this ensemble of parameters and forcing terms, spin-up simulations are carried out for the ensemble of 
model runs for a period of 10 years, using the same atmospheric forcings for the year 2015. This results in an 
ensemble of equilibrated initial conditions for the DA experiments. The total calculations cost 3.7M core-hours 
and 6TB of disk space, on supercomputer JUWELS at Jülich Supercomputing Center (JSC).

3.2.  Settings for Data Assimilation

We conducted open loop runs (i.e., forward model runs without DA) with CLM-Parflow for the year 2015 and 
compared the results with the VR simulation and more importantly, with the results of the DA experiments. This 
allows us to evaluate to which degree certain DA configurations can improve the characterization of soil mois-
ture, groundwater levels, river discharge and ET.

For the DA experiments, time series of soil moisture and/or GWL data were assimilated. For soil moisture, 
observations at 100 randomly selected locations at 5 cm and/or 50 cm depth which cover the simulation domain 
are extracted from the VR for soil moisture DA. Similarly, the groundwater levels at the same 100 locations 
are extracted from the VR for assimilation. These soil moisture (and GWL) measurements are assimilated 
every 3 days, mimicking Cosmic Ray Neutron Sensor data (similar footprint size) (Baatz et al., 2014; Bogena 
et al., 2013; Franz et al., 2015; Schrön et al., 2017; Zreda et al., 2008), remotely sensed soil moisture data (simi-
lar temporal resolution) (Entekhabi et al., 2010) or networks of soil moisture sensors which cover one grid cell 
(Bogena et al., 2010). The locations never include river grid cells, and are displayed in Figure 2. For soil mois-
ture observations, the measurement error is 0.02 cm 3/cm 3 (Rosenbaum et al. (2010) give some examples of soil 
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moisture sensors with this measurement error), and for GWL the error is 1 cm, corresponding to instrumentation 
error (e.g., British Geological Survey, https://www2.bgs.ac.uk/groundwater/datainfo/levels/measuring_errors.
html). There are other sources of error which affect the GWL measurement uncertainty such as the uncertainty in 
terrain height, which are not considered here.

Soil moisture and GWL DA are studied with a series of experiments according to Table 1. EnKF with a horizontal 
localization radius of 12 km is used. In experiments 1–6 only soil moisture data are assimilated (measurements 
at 5 cm and/or 50 cm depth, with and without parameter estimation), to update soil moisture. In experiments 7–9 
GWL data are assimilated (weakly coupled, fully coupled and with and without parameter estimation) and in 
experiments 10–11 both soil moisture and GWL measurements are jointly assimilated (again with and without 
parameter estimation). For the abbreviations of the different scenarios see also Table 1.

The root mean square error (RMSE) is introduced as a measure to evaluate the impact of DA on the characteriza-
tion of soil moisture, ET, river discharge and GWL:

RMSE(𝑡𝑡) =

√

∑𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖=1

[

𝑦𝑦
𝑓𝑓

𝑖𝑖
(𝑡𝑡) − 𝑦𝑦

𝑜𝑜

𝑖𝑖
(𝑡𝑡)
]2

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

,
� (14)

where 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑖𝑖
(𝑡𝑡) is the ensemble average of the forecasted values of the output variable under investigation (soil mois-

ture content, ET, river discharge or GWL), at time t, 𝐴𝐴 𝐴𝐴
𝑜𝑜

𝑖𝑖
(𝑡𝑡) is the corresponding value taken from the VR, and Nobs 

is the total number of observations or verification points in the study. Notice that the verification points were not 
included as observation points in the DA. This is an advantage of the VR approach, which allows an extensive 
verification of the simulation results, not being limited to the observation locations only. We evaluated the DA 
performance not only for vertical profiles, but also in the horizontal plane. This was done by selecting four grid 
cells North, South, West and East of the observation locations (see Figure 6b). This results in 100 × 4 = 400 
verification points in a sample when RMSE is evaluated. The comparison was made for grid cells located 0.8 km, 
4 and 8 km away from the observed grid cell.

An additional evaluation metric was:

𝑓𝑓 (𝑡𝑡) =
RMSE𝑂𝑂𝑂𝑂(𝑡𝑡) − RMSE𝐷𝐷𝐷𝐷(𝑡𝑡)

RMSE𝑂𝑂𝑂𝑂(𝑡𝑡)
,� (15)

Experiment (abbrev.) Observations (at 100 locations) State vector Dampening (α)

0 (OL) − − −

1 (SM5) θ at 5 cm θ −

2 (SM50) θ at 50 cm θ −

3 (SM5,50) θ at 5 cm, 50 cm θ −

4 (SM5_PAR) θ at 5 cm θ, log  Ks 0.1

5 (SM50_PAR) θ at 50 cm θ, log  Ks 0.1

6 (SM5,50_PAR) θ at 5 cm, 50 cm θ, log  Ks 0.1

7 (WC_GWL) GWL ψsat −

8 (WC_GWL_PAR) GWL ψsat and log  Ks,sat 0.1

9 (FC_GWL) GWL ψsat, θunsat −

10 (FC_GWL_SM) GWL and θ at 5 cm ψsat, θunsat −

11 (FC_GWL_SM_PAR) GWL and θ at 5 cm ψsat, θunsat, log  Ks 0.1

Note. The subscripts sat and unsat denote the saturated and unsaturated zones respectively, for soil moisture θ, pressure head 
ψ and saturated hydraulic conductivity Ks.

Table 1 
List of Conducted Data Assimilation Experiments

https://www2.bgs.ac.uk/groundwater/datainfo/levels/measuring_errors.html
https://www2.bgs.ac.uk/groundwater/datainfo/levels/measuring_errors.html
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where RMSEOL(t) and RMSEDA(t) are the RMSE of the open loop and 
DA experiment. This is the fractional reduction of the estimation error (in 
RMSE). The time average of this improvement over the year 2015 was then 
evaluated, that is:

𝐹𝐹 =< 𝑓𝑓 (𝑡𝑡) >𝑇𝑇2015
.� (16)

In order to study the ensemble statistics, the estimation error of soil moisture 
θ at location i, eθ,i is defined as the difference between the ensemble average 
and the value from the VR reference model such that eθ,i = < θi >ens − θi,o. 
The ensemble spread σθ,i is defined as the ensemble standard deviation of θi. 
For GWL, similar qualities ed,i and σd,i are defined and will be referred to in 
later sections.

4.  Results
4.1.  Assimilation of Soil Moisture Data

We focus first on the DA experiments where soil moisture data were assim-
ilated, measured at different depths. The mean and standard deviation of the 
estimation errors in soil moisture at the measurement locations are displayed 
in Table 2. It indicates that the average error approaches zero with reduced 

standard deviation. The statistics show that the initial guess is unbiased or slightly biased for these experiments, 
and after DA the widths of the distributions decrease.

On the other hand, when considering individual locations, there is substantial bias for soil moisture. The root 
mean squares of the time averaged bias over samples of 100 observation points and 400 verification points before 
and after DA for experiment SM5,50 are shown in Table 3. The table shows that the time series of soil moisture at 
most individual locations are biased, and DA reduces the bias.

Next, the ensemble spread before and after DA is examined for underestimation of the variance. To do this, the 
ratio of the yearly averaged square of estimate error to the ensemble spread is evaluated pointwise:

𝑐𝑐𝜃𝜃𝜃𝜃𝜃 =
< 𝑒𝑒

2

𝜃𝜃𝜃𝜃𝜃
>𝑡𝑡

< 𝜎𝜎
2

𝜃𝜃𝜃𝜃𝜃
>𝑡𝑡

,� (17)

Figure 3.  Monthly ensemble average of the Leaf Area Index's for the 4 plant 
functional types, namely, needle leaf forest (black), broad leaf forest (red), 
grassland (blue) and cropland (green). The ensemble standard deviations are 
shown as vertical bars.

Figure 4.  Ensemble mean (left) and standard deviation (right) of soil hydraulic parameters, at 10 cm depth in the model: (a) van Genuchten parameter α, (b) van 
Genuchten parameter n, (c) logarithmic saturated hydraulic conductivity, and (d) porosity.
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where i is the location being evaluated. The spread is considered to be appropriate if the ratio is of order unity 
or smaller; otherwise the spread is too small (De Lannoy et al., 2006). In Figure 7 the distributions of the ratio 
cθ,i for the open loop and experiment SM5,50 are shown, for the 100 observation locations, at 5 and 50 cm depth, 
and also for 400 verification points at 8 km distance from the observation locations. In each sample, cθ,i is less 
than unity at more than half of the locations, which shows that the ensemble spread is appropriate and without 
underdispersion.

Figure 5.  Ensemble mean (left) and standard deviation (right) of soil hydraulic parameters, averaged over the x-y plane, as a function of depth up to 3 m: (a) van 
Genuchten parameter α, (b) van Genuchten parameter n, (c) logarithmic saturated hydraulic conductivity, and (d) porosity.

Figure 6.  Locations sampled to calculate performance statistics like root mean square error with and without data 
assimilation, in panel (a) for the vertical profile at measurement locations and in panel (b) for the horizontal plane around 
measurement locations. Here we show the case where observations at depth 50 cm are assimilated.
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Then, the reduction in estimation error in soil moisture estimate is evaluated 
in detail. In Figure 8 the improvements in soil moisture characterization for 
experiment SM5,50 on day 365 are shown. Small improvements are observed 
in most grid cells. The middle and right panels show the ensemble standard 
deviation with and without DA, and the uncertainties decrease in most of the 
grid cells when soil moisture data are assimilated.

Figure 9 illustrates the characterization of the soil moisture content. It shows 
the temporal evolution of the RMSE for soil moisture (at the locations 
defined in Figure 6). For all cases, the RMSE's at the observation points and 
most of the verification points are lower than the corresponding values in the 
open loop simulation. Note that for upper soil layers the RMSE shows larger 
temporal fluctuations, as the soil moisture at the upper layer is affected more 
by precipitation and drying events than the deeper layers. The DA reduces 
the forecast error for verification points in the soil profile above and below 
the observation points, as well as the verification points at some horizontal 
distance from the observations. For the deeper soil profile, the joint assim-
ilation of soil moisture measurements at 5 and 50 cm depth gives the best 
results.

We evaluate the reduction in RMSE over the verification points (defined in 
Figure 6) relative to the open loop simulation and summarized the results as 
the yearly averages in Table 4, that is, the measure F defined in Equation 16 
for θ. Table 4 clearly shows that when moving away horizontally from the 

observation locations, the improvement in forecast drops, which is also shown in Figure 9b. For SM5, the measure 
F for improvement at 5 cm depth drops from 13% at 0.8 km horizontal distance to 3% at 8 km, and a similar trend 
is observed at 50 cm depth and for other soil moisture DA experiments (2–6). Results show that characteriza-
tion of soil moisture for the upper 5 cm of the soil profile is improved more by the assimilation of soil moisture 
measurements taken at 5 cm depth. On the other hand, soil moisture characterization for deeper layers improves 
more with soil moisture measurements taken at 50 cm depth. The best overall results are obtained if soil moisture 
observations from both 5 and 50 cm depth are assimilated; this is especially the case for the deeper soil layers.

Then, we analyze the impact of the soil moisture DA on the ET modeling. The RMSE for each month is shown 
in Figure 10. The relative improvement in the characterization of ET is far smaller than for the soil moisture, 
regardless of the observations used, and from Table 4 the improvement is greater for experiments assimilating soil 
moisture taken at 5 cm depth, and in these cases the estimation errors are still only 1% lower than the case without 
DA. The improvement is more obvious in July, but the RMSE-reduction by DA is still smaller than 0.02 mm/
month. The ET characterization in summer is a bit more improved by DA because the soil moisture content in 
most of the simulations is so low that ET is reduced by soil water availability, as a result the sensitivity of ET 

with respect to soil moisture content is larger (e.g., Seneviratne et al. (2006)). 
Table 4 summarizes the improvement in the ET characterization over the year 
for all the experiments.

Next, we evaluate the river discharge at the river gauge stations at Rock-
enau, Lauffen and Plochingen (indicated in Figure 2), simulated for the VR, 
open loop and DA experiments. These locations have been selected because 
they define catchment of increasing size within the overall domain. Baroni 
et al. (2017) found that river discharge is only sensitive to large scale pertur-
bation of subsurface conditions. Therefore, assimilating river discharge data 
may not improve the characterization of small scale states and parameters. 
In contrast, we assimilated small scale observations with the hypothesis that 
river discharge estimate could have been affected and improved. This is done 
by evaluating the discharge of individual grid cells across the Neckar River 
at these three locations. Figure 11 shows the discharge time series (Only the 
results of SM5,50 are shown for clarity, as the results for other experiments 
are very similar). The discharge in the VR is very close to the ensemble 

Average
θ f − θ o 

(m 3/m 3)

Standard 
deviation
θ f − θ o 
(m 3/m 3)Experiment

Depth of observations 
(cm)

0. OL 5 0.0522 0.200

0. OL 50 0.110 0.326

0. OL 5 + 50 0.0812 0.272

1. SM5 5 0.0108 0.0996

2. SM50 50 0.0107 0.0936

3. SM5,50 5 + 50 0.0112 0.0978

4. SM5_PAR 5 0.0157 0.0960

5. SM50_PAR 50 0.0188 0.0948

6. SM5,50_PAR 5 + 50 0.0169 0.101

10. FC_GWL_SM 5 0.00324 0.0880

11. FC_GWL_SM_PAR 5 0.0107 0.0864

Table 2 
Average and Standard Deviation of the Soil Moisture Estimation Errors 
Calculated Over the Measurements and the Year 2015, Both for Open Loop 
Simulations and Data Assimilation Experiments

Experiment Bias at depth (m) (obs. pts.)

0.05 0.5

OL 7.14 14.5

SM5,50 2.75 2.92

Bias at depth (m) (verif. pts.)

0.05 0.05

Horizontal distance (km) 0.8 4 8 0.8 4 8

OL 8.33 8.01 8.70 13.4 13.9 13.0

SM5,50 6.60 7.06 8.12 10.3 11.8 12.0

Note. The values are normalized with the observation errors.

Table 3 
Root Mean Square of the Time Averaged Bias of Soil Moisture Over the 
Measurement Locations and Verification Locations, for OL and SM5,50
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average of the open loop simulation except for some discharge peaks, for example, around day 90 and day 230 in 
Plochingen, when the value for the open loop is 80 m 3/s higher (on day 90) (or 40 m 3/s lower on day 230) than 
the reference value. Careful evaluation shows that there are still tiny improvements in the estimates compared 
with the open loop for all tests (a fraction of ∼10 −4 reduction in estimation error), summarized in Table 4. The 
perturbation of precipitation and soil parameters resulted only in a very limited spread of discharge, as the local 
effects averaged out over the larger catchment. The limited improvement in discharge characterization is therefore 
also related to the too limited ensemble spread.

We also analyze whether soil moisture DA could improve the characterization of the groundwater table depth. 
During a filter update, a new soil moisture analysis of the whole subsurface domain is obtained, and the pressure 
head is modified according to the Mualem-van Genuchten model (van Genuchten, 1980). As a result, the GWL 
will also be modified. The GWL of different simulation settings is compared with that of the VR. The RMSE 
at the observation locations are shown in Figure 12. The estimation errors are not reduced so assimilating soil 
moisture data does not improve the characterization of the groundwater table depth. One possible explanation 
is that  the soil parameters α and n used in the ensemble simulation are also unknown and initialized with values 
different from the VR, and are not part of the state vector. As the pressure head is estimated from the forecasted 
soil moisture in the model, this could also have limited the improvement in the analysis. Another important 
factor will be that 100 soil moisture measurements are not informative enough to improve large scale GWL 
characterization.

4.2.  Assimilation of Groundwater Level Data

The means and standard deviations of differences between forecasted and measured groundwater levels at meas-
urement locations for the year 2015 are tabulated in Table 6. The ensemble water table depth is slightly shallower 
than the VR (see column one in Table 6). The small bias is reduced by DA, resulting in a narrower distribution. 

Figure 7.  Distribution of cθ,i for ensemble spread evaluation of soil moisture, for open loop and experiment SM5,50. The locations are (a) observation locations at 5 cm 
depth, (b) observation locations at 50 cm depth, (c) verification locations at 5 cm depth, 8 km from the observation locations, (d) verification locations at 50 cm depth, 
8 km from the observation locations.
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In all cases the GWL estimates are improved compared with the open loop simulation. Moreover, weakly coupled 
DA results in a better characterization of GWL compared with fully coupled DA, with smaller bias and standard 
deviations.

Again, similar to soil moisture DA, the root mean squares of time averaged bias of GWL over observation and 
verification points are evaluated before and after DA for experiment WC_GWL. The results are shown in Table 5. 
There are biases in the pointwise time series of GWL and the biases are reduced by DA for the observation points 
and most of the verification points.

We also evaluated underdispersion of GWL in the ensemble before and after DA. Similar to Equation 17, the 
ratio 𝐴𝐴 𝐴𝐴𝑑𝑑𝑑𝑑𝑑 =< 𝑒𝑒

2

𝑑𝑑𝑑𝑑𝑑
>𝑡𝑡 ∕𝜎𝜎

2

𝑑𝑑𝑑𝑑𝑑
 can be defined for GWL. The distributions of this ratio at the observation locations and 

verification locations (8 km from the observation locations) are shown in Figure 13, for the open loop and exper-
iment WC_GWL. Compared with Figure 7, the spread is smaller and the medians are greater than unity but still 
less than 2. The median increases after DA, showing the ensemble spread decreases in general after GWL DA.

The absolute error of the GWL estimates over the domain for the open loop simulation and the weakly coupled 
case WC_GWL are compared. The fractional reduction of the estimation error after DA at the end of the assim-
ilation period, is shown in Figure 14a. For 40% of the domain the characterization of the GWL improves signif-
icantly with DA, with a reduction of the estimation error of more than 1 cm (which is the observation error 
assumed in virtual GWL measurements). For 23% of the domain, on the other hand, there are more than 1 cm 
increase in the error, and the changes in the estimate are small for the rest of the domain (37%). The ensemble 
standard deviations before and after DA at the end of the year are also shown in Figures 14b and 14c respectively, 
which clearly indicates a reduction in uncertainties in the majority of the simulation domain.

The RMSE in GWL estimates at the observation locations and the neighboring grid cells are shown in Figure 15. 
In all cases, there is improvement in the forecast of the GWL at the measurement locations as well as in the 
surrounding of these locations, and the benefits decrease further away from the measurement locations. The 
weakly coupled cases show that GWL estimation is still improved 8 km away from the measurement locations 

Figure 8.  (a) Left: relative reduction of error after data assimilation according to Equation 15 on day 365 for SM5,50 at 5 cm depth. Middle: the standard deviation of 
soil moisture of open loop simulation on day 365 at 5 cm depth. Right: the standard deviation of soil moisture of SM5,50 on day 365 at 5 cm depth. (b) Same plots as (a) 
at 50 cm depth.
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(around 10% RMSE reduction) whereas for fully coupled simulations the GWL estimation is still improved 4 km 
away from measurement locations, but not anymore for 8 km separation. For a separation distance 800 m from 
the measurement locations, RMSE reductions are around 50% at the end of the simulation period for the different 
scenarios.

We analyze now whether GWL assimilation also improved soil moisture characterization. The RMSE along the 
vertical profile of the observation locations and in the neighborhood of the observation locations are shown in 
Figure 16 (The results in terms of RMSE for GWL DA with parameter update are very close to the results for 
only updating groundwater levels, so these are not shown in Figure 16 for clarity). For weakly coupled cases, soil 
moisture RMSE reduces by 2 ∼ 6%. For fully coupled DA where the soil moisture in the unsaturated zone is also 
directly updated, there is even not any improvement compared with the open loop simulation.

Table  4 also shows results for ET characterization. Similar to soil moisture DA, we get improved estimates 
compared with the open loop simulation in some experiments, but the improvements are again small. The relative 
improvements in river discharge estimation compared with open loop simulation are even smaller.

Figure 9.  (a) Temporal evolution of root mean square error (RMSE) of soil moisture at six different depths (ranging between 
0.02 and 1.30 m), at 100 observation locations, for the year 2015, for the open loop run and different data assimilation 
runs with assimilation of soil moisture data measured at 5 cm and/or 50 cm depth. (b) Temporal evolution of RMSE of 
soil moisture at 5 cm depth (upper row) or 50 cm depth (lower row), at verification points which are 800 m, 4 km or 8 km 
separated from observations.
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4.3.  Joint Assimilation of Groundwater Level and Surface Soil Moisture Data

For the fully coupled cases FC_GWL_SM and FC_GWL_SM_PAR, GWL and surface soil moisture data are 
jointly assimilated, resulting in improvement in the soil moisture forecast for observation locations along the 
vertical profile, but for other verification points the soil moisture forecast is worse than for the open loop run. 
Also, similar to cases with univariate soil moisture or GWL DA, there are only very small improvements in the 
estimates of ET. This implies that the additional assimilation of GWL data, besides soil moisture data, does not 
improve soil moisture characterization further, at least not for this relatively small ensemble size.

Experiment

1 2 3 4 5 6 7 8 9 10 11

SM5 SM50 SM5,50

SM5_
PAR SM50_PAR

SM5,50_
PAR WC_GWL

WC_GWL_
PAR FC_GWL

FC_GWL_
SM

FC_GWL_
SM_PAR

Soil moisture/θ

Depth (m)(obs loc)

  0.02 0.456 0.273 0.394 0.514 0.298 0.434 0.0247 0.0240 −0.222 0.516 0.561

  0.05 0.479 0.286 0.411 0.537 0.308 0.453 0.0259 0.0251 −0.241 0.540 0.587

  0.30 0.449 0.479 0.512 0.453 0.511 0.541 0.0109 0.0109 −0.296 0.433 0.443

  0.50 0.406 0.605 0.585 0.385 0.625 0.592 0.0120 0.0121 −0.315 0.354 0.364

  0.80 0.357 0.511 0.501 0.341 0.520 0.500 −0.00497 −0.00504 −0.340 0.280 0.294

  1.30 0.158 0.220 0.222 0.159 0.227 0.226 0.0125 0.0134 −0.0575 0.128 0.102

Horizontal distance (km)

at depth 5 cm

  0.8 0.132 0.0865 0.113 0.139 0.0912 0.119 0.0587 0.0587 −0.102 0.0155 −0.0375

  4.0 0.0566 0.0300 0.0457 0.0580 0.0258 0.0459 0.0398 0.0397 −0.170 −0.158 −0.2065

  8.0 0.0274 0.0188 0.0203 0.0258 0.0197 0.0185 −0.0278 −0.0294 −0.0824 −0.0559 −0.0718

Horizontal distance (km)

at depth 50 cm

  0.8 0.109 0.126 0.119 0.104 0.128 0.121 0.0266 0.0270 −0.255 −0.108 −0.161

  4.0 0.0469 0.0404 0.0464 0.0480 0.0376 0.0456 0.0178 0.0169 −0.272 −0.288 −0.317

  8.0 0.0156 0.0106 0.00448 0.0137 0.0102 0.00311 −0.0391 −0.0404 −0.219 −0.201 −0.192

Groundwater level (m)

Horizontal distance (km)

  0 (obs loc) −0.126 −0.164 −0.152 −0.125 −0.164 −0.152 0.761 0.761 0.863 0.875 0.872

  0.8 −0.0809 −0.0824 −0.0840 −0.0830 −0.0793 −0.0821 0.345 0.345 0.441 0.535 0.541

  4.0 −0.121 −0.133 −0.131 −0.121 −0.134 −0.127 0.165 0.172 0.127 0.123 0.126

  8.0 0.0124 0.0187 0.0135 0.0138 0.0196 0.0285 0.0930 0.101 −0.175 −0.101 −0.100

River discharge

  Rockenau (10 −4) 4.54 4.18 4.05 5.03 4.49 4.49 5.12 5.10 1.21 3.57 3.69

  Lauffen (10 −4) 3.85 3.66 3.60 4.08 3.71 3.70 3.14 3.02 0.486 2.21 2.10

  Plochingen (0 −4) 1.51 1.34 1.35 1.63 1.30 1.41 1.37 1.36 0.791 1.47 1.41

  Evapotranspiration 
(obs loc)

0.0129 −0.00351 0.00319 0.0126 −0.00433 0.00314 0.00485 0.00587 −0.0228 0.0131 0.0121

Note. The metric F is evaluated for soil moisture along the vertical profile (rows 1–6) (labeled as depth) and at a horizontal distance from the observation at 5 cm depth 
(rows 7–9) and 50 cm depth (rows 10–12). The metric F is also evaluated for groundwater level and are shown at the measurement locations and as a horizontal distance 
from the location as well (rows 13–16). Similarly the values of F for discharge at the 3 locations (rows 17–19) and for the ET (the last row) are shown.

Table 4 
Yearly Average Error Reduction F (Equation 16) for the Estimated Soil Moisture, Groundwater Level and Evapotranspiration for the Year 2015, for All the 
Experiments
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4.4.  Joint State-Parameter Estimation

If parameters are estimated with help of the assimilation of soil moisture 
data, soil moisture characterization is more improved than for the cases with 
state updating alone, without parameter estimation. This is shown in the 
summary of results on the basis of yearly statistics of the error measure F in 
Equation 16 presented in Table 4. Such a result is expected as Ks is an impor-
tant parameter to characterize θ in the subsurface model. Figure 17 shows the 
color contour plot of log  Ks of the VR, open loop run and DA runs, over  the 
Neckar river catchment. It shows that DA starts with a higher Ks average 
than in the open loop. Eventually, at the end of year 2015, the mean spatial 
average of Ks is reduced but still systematically higher than for the VR. The 
time evolution of the estimation error in log  Ks over the observation locations 
and other neighboring locations is shown in Figure 18, and it shows that the 
estimation errors are decreasing asymptotically as time evolves. Among the 
cases examined, assimilation soil moisture data measured at 50  cm depth 
gives the best estimate of Ks. Figure 18b indicates the estimation error of log  
Ks at the end of the assimilation period, subtracted by the error before DA. 
The RMSE is evaluated over samples of verification points with increasing 

distance from the observations (Figure 6). There is improvement in the estimate of the hydraulic conductivity 
locally around the observation locations, at a vicinity of 4 km from the observations, further than 4 km the esti-
mation error increases to the same levels as the initial estimated Ks and there is no benefit from DA. This range 
is shorter than the filter localization radius (12 km), and also shorter than the range for which improved soil 
moisture estimation is achieved (at least 8 km). Overall, at the end of the DA period, the RMSE of log  Ks at the 
observation locations is reduced by 11%, for both 5 and 50 cm depths.

On the other hand, updating log  Ks with GWL data does not improve GWL estimation, when compared to the 
corresponding experiments where log  Ks is not updated (Figure 15). This is the case for the weakly coupled and 
fully coupled DA scenarios. Figure 19 also illustrates that there is no improvement in the estimate of log  Ks at 

5 cm and 2.0 m depth at the observation locations, after DA. For the weakly 
coupled case, the components of the state vector for the unsaturated zone 
will not be modified during filtering, and the changes in log  Ks near the 
surface are limited. For the fully coupled case, the estimate does not approach 
the values in the VR, compared with the case where only soil moisture data 
at 5 cm depth are assimilated. Therefore, unlike soil moisture, GWL DA is 
ineffective to estimate hydraulic conductivity, possibly related to the small 
ensemble size.

In all experiments, additional estimation of hydraulic conductivity does not 
improve the ET-modeling. The effectiveness of estimating Ks is hindered by 
(a) the small ensemble size used and (b) the uncertainties of soil parameters 
other than Ks which are not estimated.

5.  Discussion
Without DA, model states and fluxes differ between the VR and the ensem-
ble members as the atmospheric forcing terms, vegetation parameters and 
the subsurface hydraulic parameters are uncertain. We showed that these 
variabilities in forcings and parameters contribute to the differences between 
the reference and the ensemble model runs, in soil moisture, GWL, river 
discharge and ET. Data assimilation is capable of reducing these differences 
in soil moisture and GWL between the reference and ensemble model runs 
significantly, but benefits are less obvious for river discharge and ET.

Assimilation of soil moisture data over the network of 100 locations can 
improve the characterization of soil moisture for the whole domain. The 

Figure 10.  Monthly root mean square error of evapotranspiration at the 100 
observation locations, for data assimilation-experiments with soil moisture 
observations at 5 cm (blue), 50 cm (red), and both (green).

Figure 11.  Temporal evolution of the river discharge at Rockenau, Lauffen 
and Plochingen in the year 2015, for the virtual reality (black dotted), open 
loop simulation (green solid), SM5,50 (red solid) respectively, and ensemble 
standard deviations are shown in light green and light red shaded area 
respectively (barely noticeable at some peaks).
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estimation error is higher for locations horizontally further away from the 
observations, but still better than the estimate from the open loop simulation. 
Data assimilation also improves the ET characterization, compared to the 
open loop simulation. However, the average RMSE-reduction is limited to 
1.2% over the year 2015, and here soil moisture observations near the surface 
are more effective in reducing RMSE of ET than deeper soil moisture obser-
vations. Larger improvements are found when conditions are drier (summer 
and beginning autumn). When soil moisture content is high, the ET is close 
to the potential ET and insensitive to variations in soil moisture content. In 
addition, the latent heat flux is not the observation used in the experiments, 
and only soil moisture content at one location in the soil profile is assim-
ilated. Therefore, possibilities to improve ET-characterization would be to 
assimilate further data types (latent heat flux, but also LAI). In this work, the 
land surface model CLM is driven by atmospheric forcings, instead of being 
coupled to an atmospheric model. Data assimilation will not alter the forcing 
terms such as incident radiation and the latter also affects the ET. This also 
limits the performance regarding the ET estimation. Therefore, a possible 
improvement is to extend the model to a fully coupled system with an atmos-
pheric model integrated in the DA framework. In general, the experiments 
show that assimilation of soil moisture alone will often not be enough to 
substantially improve the ET-characterization.

On the other hand, soil moisture DA does not improve the GWL characterization. The new estimate of GWL from 
soil moisture DA gives a slightly higher RMSE compared with the open loop simulation, though the differences 
are small compared with the absolute value of the error. The values of the river discharge in the VR at the 3 loca-
tions investigated are close to the values of the ensemble average, subject to small uncertainties, and the effect 
of DA is also limited. These results point to the difficulties to characterize the states of different compartments 
of an integrated land surface-subsurface model with just one specific measurement type. It is also possible that 
the relatively small ensemble size compromises the effectiveness of the method. However, DA studies with inte-
grated models will in general have to face that the ensemble size will be smaller than desired.

If saturated hydraulic conductivity is updated together with the states, there is slightly further improvement 
in soil moisture estimation compared with the cases soil moisture is updated alone, but the effect is rela-
tively local, along the vertical profile, and the further benefit is less than 6% along the vertical profile. The 
new estimate of the Ks is also approaching the reference Ks, but the effect is again locally around the soil 
moisture observation locations. The ensemble size (64) is not large enough to improve further the simula-
tions, and is associated with (too) large sampling errors for the covariances. Studies found that for successful 
joint state-parameter estimation with groundwater hydrological models ∼200–∼1,000 realizations are needed 
(Hendricks-Franssen & Kinzelbach,  2008; Zhou et  al.,  2011). Moreover, other soil parameters used in the 
ensemble simulations are different from the VR setup (as described in Section 3) and these parameters are 
not included in the state vector. Reasonably estimating these parameters as well by DA also requires enlarge-

ment of the ensemble size. However, in this study a larger ensemble size 
was not feasible given the needed computation times with the coupled 
high-resolution land surface-subsurface model.

Assimilation of GWL data helped to improve soil moisture estimation in 
the weakly coupled scenarios, to a lesser extent than assimilating directly 
soil moisture data, as could be expected. In these scenarios, the soil mois-
ture is not directly modified by the EnKF, instead, the effect of updating 
the pressure head under the watertable propagates upwards by the model 
Parflow and alters the pressure head and therefore also soil moisture content 
above the groundwater table. In the fully coupled scenarios, the soil moisture 
above the watertable is directly updated by the EnKF. However, there is no 
improvement in the estimate of soil moisture for the case only GWL data 
are assimilated (FC_GWL). If besides GWL data also surface soil moisture 

Figure 12.  Root mean square error of water table depth for the 100 
observation locations over the year 2015, for the open loop and different data 
assimilation experiments where soil moisture measurements were assimilated.

Verif. pts.
Horizontal distance
from obs. pts. (km)

Experiment Obs. pts 0.8 4 8

OL 79.1 84.5 77.2 60.0

WC_GWL 15.8 93.2 61.8 52.7

Note. The values are normalized with the observation errors.

Table 5 
Root Mean Square of the Time Averaged Bias of Groundwater Level 
Over the Measurement Locations and Verification Locations, for OL and 
Experiment WC_GWL
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data are assimilated, the soil moisture estimate is only improved along the 
vertical profile at the observation location. At other verification points, the 
RMSE is higher than the estimate from the open loop simulation. The joint 
assimilation of soil moisture and GWL data results in a worse soil moisture 
estimation than the univariate assimilation of soil moisture data. This conclu-
sion differs from the work by H. Zhang et  al.  (2018), who used the same 
coupled model CLM-Parflow and stated that jointly assimilating surface soil 
moisture and GWL data with update of all subsurface states resulted in a 
better soil moisture characterization than other scenarios. This is because in 
their work the simulation domain consisted of only 2 × 2 soil columns, and 
a larger ensemble could be used. In this work, groundwater levels are also 
strongly controlled by topography variations and lateral groundwater flow, 
so that soil moisture data are probably less informative about groundwater 
levels and vice versa. In addition, as indicated before, the small ensemble 
size may have prevented better results, but no significant filter inbreeding 
was observed, suggesting that the small ensemble size has not been a major 
factor preventing better results. Currently, a single DA experiment with 64 
ensemble members takes 0.55M core-hours (not including the spin up) and 

6TB of disk space (the disk usage is the same for the open loop simulation). The cost is at least directly propor-
tional to the ensemble size.

Both the weakly and fully coupled assimilation of groundwater levels result in an improved characterization of 
groundwater levels. The weakly coupled cases also perform better than the fully coupled cases, with a narrower 
distribution of estimation error over the yearly measurements. The weakly coupled cases bring a longer range of 
improvement around the observation locations compared with the fully coupled cases. It is for the first time that 
for a larger scale integrated land surface-subsurface model, and a fully 3D heterogeneous subsurface, it could be 
shown that GWL assimilation is able to improve GWL characterization also substantially between measurement 
locations. Assimilating GWL data can hardly bring any better estimate of ET in all scenarios, which is related to 
the very limited improvement in soil moisture characterization, already discussed earlier. This is partly related to 
the fact that in a substantial part of the domain the watertable is quite deep, so that soil moisture content near the 
surface and ET are not better characterized there.

We assumed hydrostatic conditions for assimilating groundwater levels. In a real-world case multiple aquifers 
separated by aquitards might be present, so that the hydrostatic assumption would not be valid. In that case, for 
the updating step in DA a hydrostatic assumption for each aquifer layer could be made, and measurements could 
be used to just update pressures in a single aquifer layer.

The coarse model discretization is a limitation in this work, for example, for the representation of aquifers in 
narrow river valleys. We are in current research addressing the issue of a scale mismatch between reality and the 
simulation model. We agree that in case of a coarse discretization also the comparison of a GWL measurement 

Experiment
Average

GWL f-GWL o (m)
Standard deviation
GWL f-GWL o (m)

0. OL −0.395 0.568

7. WC_GWL 0.0464 0.291

8. WC_GWL_PAR −0.0465 0.388

9. FC_GWL −0.102 0.525

10. FC_GWL_SM −0.0981 0.480

11. FC_GWL_SM_PAR −0.0940 0.475

Note. The corresponding values for open loop simulation are also shown for 
comparison.

Table 6 
Average and Standard Deviation of the Estimation Errors of Groundwater 
Level at the Measurement Locations for the Year 2015, and for the 
Experiments Where Groundwater Level Data Are Assimilated

Figure 13.  Distribution of cd,i for ensemble spread evaluation of groundwater level, for open loop and experiment WC_GWL. 
The plotted locations are (a) observation locations, (b) verification locations, 8 km from the observation locations.
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and simulated groundwater levels is more complicated, because the simulated groundwater levels need to be inter-
polated to make a direct comparison with the measured value, exactly at the measurement locations. This interpo-
lation will also be associated with uncertainty. In this work this issue was avoided by assigning the measurement 
locations to the grid cell centers so that measurement locations and simulated values can be directly compared. 
In real-world cases, more complications can be expected. In addition, the effect of the prior on the results is not 
studied in this work, which can be important. Examples of related studies include Crow and Loon (2006), in 
which they conducted a series of twin experiments of soil moisture DA with EnKF, and they found that when the 
model error is intentionally under-estimated, or when incorrect model error assumptions are imposed, the accu-
racy of the results would be reduced or the same as that of the open loop simulations. Therefore, the sensitivity 
with respect to the prior will also be another follow-up study.

Although the Mualem-van Genuchten parameters α and n can also be considered for estimation (e.g., Chaudhuri 
et al. (2018)), this was not done in this work. The problem size did not allow us to use a large ensemble, and 
the estimation of α and n is prone to (numerical) instabilities under those conditions. On the other hand, Gebler 
et al. (2019) illustrated that uncertainty of α and n could have little impact on the performance of the DA, though 
this finding might have been case specific.

Another important future follow-up of this work could be the assimilation for a real-world case, including 
remotely sensed soil moisture data and GWL measurements. In addition, the effect of the biased ensemble can be 
investigated in detail, and using a bias-aware filter is also a way to reduce such a bias.

Overall, it can be observed that the benefits of DA in the above experiments are relatively local in the vicinity of 
the measurement locations. When compared with the open loop simulation, the improvements in soil moisture 
or GWL characterization are limited to a distance shorter than the localization radius of the filter, and the effect 
is more obvious for parameter estimation. Nevertheless, given the relatively dense network of groundwater wells 
domain wide improvements in the GWL characterization could be achieved, which was shown in this work for 

Figure 14.  (a) Fractional reduction of estimation error in groundwater level (GWL) after data assimilation at the end of the simulation period (scenario WC_GWL). (b) 
Ensemble standard deviation of the GWL for the open loop run. (c) Ensemble standard deviation of the GWL for WC_GWL scenario.

Figure 15.  (a) Temporal evolution of root mean square error (RMSE) of groundwater level (GWL) at 100 observation locations, for the year 2015, for the open loop 
run (dotted line) and different data assimilation runs for Experiments WC_GWL (blue), FC_GWL (green), and FC_GWL_SM (magenta). (b) Temporal evolution of 
RMSE of GWL at verification points which are 800 m, 4 km or 8 km separated from observations.
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the first time for a coupled land surface-subsurface model and a complex topography with many small valleys. 
Therefore, a denser measurement network can definitely improve the characterization of the subsurface states 
and parameters of large land surface-subsurface simulation domains. More computation power to increase the 
ensemble size is also important for achieving better results.

Figure 16.  (a) Temporal evolution of root mean square error (RMSE) of soil moisture at six different depths (ranging between 0.02 and 1.30 m), at 100 observation 
locations, for the year 2015, for the open loop run (dotted black) and for the different scenarios, WC_GWL (blue), FC_GWL (green) and FC_GWL_SM(magenta). (b) 
Temporal evolution of RMSE of soil moisture at 5 cm depth (upper row) or 50 cm depth (lower row), at verification points which are 800 m, 4 km or 8 km separated 
from observations.
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6.  Conclusion
This study deals with soil moisture DA and GWL DA over the Neckar catchment (57,850 km 2) in Germany using 
a VR approach. A VR is constructed for the area with the coupled land surface-subsurface model TSMP, and at 
a high horizontal spatial resolution of 800 m for the land surface and subsurface components. Soil moisture and 
GWL observations are extracted from the VR and used in DA experiments. Data assimilation experiments are 
done with the coupled land surface and subsurface components of TSMP, and the EnKF including localization. 
The ensemble simulation are based on perturbed atmospheric forcings, LAI and soil hydraulic parameters. The 
DA experiments are carried out with 64 ensemble members and for the year 2015. Soil moisture characterization 

Figure 17.  Color contour plots of the saturated hydraulic conductivity Ks. The panels at the top show Ks at depth 5 cm, and the panels at the bottom at depth 50 cm. 
From left to right: (a) virtual reality, (b) open loop simulation, (c) data assimilation using soil moisture observations (a) SM5_PAR, (b) SM50_PAR, and (c) SM5,50_PAR.

Figure 18.  (a) Root mean square error (RMSE) of log10Ks, average over the observation locations at depth 5 cm (solid lines) and 50 cm (dashed lines) respectively. 
Results of 3 scenarios are shown, using observations at depth 5 cm (black lines), 50 cm (red lines), and both depths (green lines.) (b) Difference of RMSE of log10Ks 
between the end and start of the year 2015, over samples of verification points at increasing horizontal ranges from the observation locations. Again results for depth 
5 cm (solid lines) and 50 cm (broken lines) are displayed, in the cases soil moisture data at depths 5 cm (black), 50 cm (red) and both (green) (Experiments 6, 7, 8 resp.) 
are assimilated.
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is improved with a RMSE-reduction in the range of 40%–60% for the soil 
moisture profile at the observation points. The improvement is smaller in the 
horizontal direction moving away from the observation points, namely 13% 
at 800 m distance and 3% at 8 km distance. Assimilation of near surface soil 
moisture data (5 cm) results in better soil moisture estimates near the surface. 
Assimilation of soil moisture measurements taken at 50 cm improves  surface 
soil moisture characterization nearly as much as measurements from 5 cm, 
and improves the deeper soil moisture profile characterization more. Joint 
assimilation of soil moisture from 5 to 50  cm depth gives therefore the 
best improvement. The ET characterization also improves slightly by soil 
moisture DA, with nearly 1% RMSE reduction for the year 2015. Estimat-
ing hydraulic conductivity together with model states, brought the hydraulic 
conductivity locally closer to the VR in a vicinity of 4 km around the meas-
urement locations.

In this work, we also assimilated for the first time GWL data in a coupled 
land surface-subsurface model over a large domain like the Neckar catchment 
and surroundings, and with a complex topography including many small 
valleys and a fully heterogeneous 3D subsurface. We found an improved fore-
cast of the GWL at the observation locations, the estimation error is reduced 
by 76%–88%, but the benefits reduce when moving away from the observa-
tions. The weakly coupled assimilation gives a better performance with an 

improvement at least for a range of 8 km from the observations, while for the fully coupled DA improvements 
are only found up to 4 km distance from the observation locations. For the weakly coupled cases, assimilating 
GWL data alone can also slightly improve the soil moisture characterization, reducing the RMSE by 1%–6%, 
which is not the case for the fully coupled case. Even with additional assimilation of surface soil moisture data, 
the fully coupled scenarios can only improve the estimate of soil moisture at the observation locations. Overall, 
the weakly coupled scenarios perform better for assimilation of GWL data, in terms of better characterization of 
subsurface states between the measurement locations. The results show the difficulties in improving the charac-
terization of subsurface states of a realistic land surface-groundwater model, with a complex topography involv-
ing many small valleys and hill ridges. On the other hand, it could also be shown that GWL assimilation is able to 
improve GWL estimation over large parts of the domain between the measurement locations. The river discharge 
at the selected locations is also investigated for the DA experiment. It is found that without DA, the difference 
between the values for the open loop simulation are very close to the reference model VR, leaving small room for 
improvements and therefore the benefit of DA is very small with less than 0.1% reduction in the estimation errors 
compared with the open loop simulation. Results show the challenge to improve the characterization of states of 
complex land surface-subsurface models by DA, and point to the need to explore the assimilation of multiple data 
types in those models, and increase computation efficiency to be able to use larger ensemble sizes.

Appendix A:  Variograms of Atmospheric Variables Derived From Fully Coupled 
Ensemble Simulations
As clarified in Section 3, we conducted ensemble simulations (16 members) with Terrestrial Systems Modeling 
Platform including all three component models. These simulations had perturbed lateral atmospheric boundary 
conditions according the COSMO setting. Variograms and cross-variograms were determined for four atmos-
pheric variables (precipitation, shortwave radiation, longwave radiation and air temperature). These variograms 
are calculated on the basis of the data from the year 2015, for days with precipitation and during daytime (so that 
the correlation between precipitation and shortwave radiation can be evaluated). The yearly averages and standard 
deviations of the sill, spatial and temporal correlation ranges are given. We assumed isotropy in space for the 
different variables. In the following, the parameters of the variograms are expressed in matrices and the first to 

Figure 19.  Root mean square error of log10Ks, averaged over the observation 
locations at depth 0.5 m (solid lines) and 2.0 m (dashed lines) respectively. 
Results of 2 scenarios are shown, WC_GWL_PAR (red lines) and FC_GWL_
SM_PAR (cyan lines).
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forth row is respectively for precipitation, shortwave radiation, longwave radiation and air temperature. We only 
give the upper triangular entries as the matrices are symmetric. The sills are given by:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.8 ± 0.1 −0.13 ± 0.04 −0.01 ± 0.02 −0.21 ± 0.04

∗ 0.93 ± 0.05 −0.6 ± 0.1 0.09 ± 0.06

∗ ∗ 0.85 ± 0.04 0.19 ± 0.06

∗ ∗ ∗ 0.83 ± 0.04

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,� (A1)

the ranges in space (km) are:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

70 ± 20 110 ± 50 10 ± 20 120 ± 30

∗ 120 ± 30 120 ± 30 100 ± 50

∗ ∗ 100 ± 30 80 ± 30

∗ ∗ ∗ 120 ± 30

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,� (A2)

and the temporal correlations (in hours) are:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

4.1 ± 0.2 4.3 ± 0.9 1 ± 2 4.1 ± 0.2

∗ 4.3 ± 0.9 4.3 ± 0.9 3 ± 2

∗ ∗ 4.3 ± 0.9 4.3 ± 0.9

∗ ∗ ∗ 4.3 ± 0.9

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.� (A3)

Data Availability Statement
Computing time has been provided by the Gauss Centre for Supercomputing (http://www.gauss-centre.eu/
gauss-centre/EN/Home/home_node.html) and the Facilities are operated by the Juelich Supercomputing Centre 
(JSC) (http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html). The data used in this work are available at 
https://datapub.fz-juelich.de/slts/neckar_tsmp_pdaf/.
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